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PfafFenwaldring 38-40,70569 Stuttgart, Germany 
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Abstract. A semiphenomenological theory is proposed for the calculation of the frequency and 
temperature dependences of the optical pmpe~ies of polyvalent metals. Utilizing the concept of 
parallel bands, the transverse optical conductivity is decomposed into anearly-freeelectran paa 
and in an interband pan The theory needs only one fining parameter, the unknown electron- 
electron scattering frequency above the Fermi energy. The complete set of optical quantities 
b calculated for aluminium for a large frequency range (0.01-50 eV) and from T = 300 to 
WOO K. 

1. Introduction 

A complete knowledge of the ‘optical constants’ is desirable for many applications, e.g. 
for the treatment of materials by laser light. For this reason, many experiments have been 
made to determine the frequency dependence of the optical ‘constants’ refractive index 
and extinction coefficient or dielectric function of solid materials at a fixed temperature. 
Compilations are given by Palik (1985, 1989). However, only a few mmurements exist for 
the temperature dependence of the absorption at a fixed wavelength (Miller 1969, Briickner 
et a2 1989, Krishnan and Nordine 1993). The situation is still worse in the liquid state. 
Even for aluminium, presumably the most carefully investigated metal, OUT knowledge is far 
from being complete. As for the experiments, the reason lies in complications originating in 
surface contamination and in the high melting temperature of metals. As for the theory, it lies 
in the breakdown of translational invariance needed in the usual band-sfmcture calculations. 
Although successful treatments to overcome this problem have been made recently by 
Hafner and co-workers (Hafner and Kahl 1984, Jank and Hafner 1990), the calculation 
of optical properties of liquid metals using the complete band structure is still left to the 
future. But even then, the computations would be rather time-consuming. For this reason, 
we propose a semiphenomenological theory for the frequency and temperature dependences 
of the optical properties of polyvalent metals in the liquid and solid state. In this paper, we 
restrict ourselves to the evaluation of aluminium. Other metals are treated in a forthcoming 
article. 

In section 2, we outline the 
semiphenomenological theory for the calculation of hansverse conductivity for cubic 
polyvalent metals. This is applied to solid and liquid aluminium in section 3. Conclusions 
and an outlook is contained in section 4. 

0953-8984/94/132459tI~l9.50 @ I994 IOP publishing Ltd 2459 

The organization of this paper is as follows. 
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2. Theoretical model 

The optical properties of metals are determined by the complex frequency- and temperature- 
dependent conductivity u(o, ?'). The relation with the complex dielectric function ~(o). 
commonly used for the calculation of the refractive index n(o, T), extinction coefficient 
R(o, T), reflection R(o. T) and absorption A ( o ,  T), is given by 

E ( @ ,  T) = 1 + i4nu(o, T ) / o .  (1) 

Following Ehrenreich (1966). we decompose the electronic conductivity into a nearly- 
T). Then we can write free-electron (intraband) part U&. T) and an interband part 

u(0, T) =OD(@, T) fuIB(m, T). (2) 

The second term can be rather involved for a complicated band shucture because transitions 
for all energies are possible from flat bands lying below the Fermi energy level. Fortunately, 
the situation is somewhat simpler for polyvalent metals since near-parallel oneelectron 
bands occur in these systems, contributing the dominant part to the interband conductivity. 
This is due to the much lvger weight of the joint density of states to the transition probability 
for parallel bands. Here and in the following we neglect some additional fine structures 
arising at critical points. There have considerably smaller pbase space and oscillator 
strengths (Ashcroft and Sturm 1971). 

Taking this into account, we will approximate the interband contribution by a resonant- 
like term and the intraband conductivity by a Drude expression with a temperature-dependent 
relaxation time, ZD(T). 

The well known Drude term for a time-dependent field reads 

U ( @ ,  T) = Um/[l - iOTD(T)] (3) 

where the DC conductivity uw is given by 

u ~ ( T )  = Ne2sD(T)/m' (4) 

with N as the density of conduction electrons and m' = Mm the effective electron mass. 
M is a measure for the deviation of the behaviour of the conduction el&ons from that of 
true free electrons. The DC conductivity is related to the plasma frequency according to 

where S2, is the plasma frequency of nearly free electrons. 
The theoretical description of the interband conductivity in the present case is similar 

to the approach of Ehrenreich et al (1963), who derived straightforwardly an expression 
for U(@) from the assumption of a relaxation time from the Kubo formula The problem 
of violation of the equation of continuity, which could appear by a naively conshucted 
collision term, was first discussed by Ehrenreich (1966) and treated later in detail by Garik 
and Ashcroft (1980). In their paper the authors derived a number-conserving expression 
for the dielectric function, €(U), which is somewhat more complicated than the formula 
used below in this paper. But numerical calculations for aluminium and sodium showed 
that the corrections are vely small. This is especially valid for the range of available laser 
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frequencies being well below the plasma frequencies of metals and which, with respect to 
the applications, is of particular interest here. 

In the relaxation-time approximation, the interband conductivity is given by (Ehrenreicb 
1966, Ashcroft and Sturm 1971) 

where 

on ornt = h-'[Er(k) - Em(k)] (7) 

En#@) < EF 4 J%(k) 

is the energy difference belonging to the nth parallel band, EF is the Fermi energy level 
and w is the photon energy. Further, 

A .  = (Vmfto.)(~:,) (8) 

is an average oscillator strength and T&) is the interband scattering time. 
The index n counts the number of parallel bands and the energies h o .  are simply 

twice the Fourier component of the pseudopotential belonging to the respective interband 
transition. Since the calculation of these pseudopotential form factors is beyond the scope 
of a phenomenological theory, we will take over the values from existing band-structure 
calculations or from experiments, e.g. from the analysis of the de Haas-van Alphen effect 
(Ashcroft 1963). 

Using the sum rule for the effective mass (Brust 1970, Smith and Shiles 1978), we 
derive in a non-local approximation a first equation for the determination of the oscillator 
strengths A,, i.e. 

C A "  = 1 - 1jM. 
n 

If we have only one parallel band, in the simplest approximation, equation (9) determines 
the oscillator strength if M is known. But in most cases two or three bands contribute and 
one needs further equations. These are given by 

A.JA,+I =Rem(o. ,  T)/Reols(On+1, 0. (10) 

As can be easily shown by the determination of the maxima of the real part of the interband 
conductivity given by equation (6), equation (10) is valid for values for on, not too closely 
spaced. In practice, these values may be taken from the measured interband conductivity 
or evaluated (see below) within the framework of the proposed theory. 

In the limit M + 1, equation (9) vanishes and thus indicates the fact that a free-electron 
gas cannot absorb photons. As a consequence, if in the liquid state the value of M is near 
unity, the interband contribution disappear, but for larger values they will be present. Thus 
equation (2) is applicable both in the solid state and in the liquid state. 

Up to here, we have regarded the DC conductivity, the effective mass, the plasma 
frequency and the interband frequencies as constants and not as functions of the external 
parameters, temperature or pressure. This may be a usual and acceptable approximation 
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for small volume changes, but the experimental works of Tups and Syassen (1984) 
and Mathewson and Myers (1972) clearly show a remarkable pressure and temperature 
dependence, respectively, for all mentioned quantities. Since we are interested in the 
optical properties in the range from room temperature up to temperatures far above the 
melting point, where the temperature is mostly larger than the Debye temperature, we can 
describe the volume expansion by a linear approximation. Both in the solid and the liquid 
state we will take into account the volume dependence of the effective mass, the plasma 
frequency and the interband energies by its thermal expansion. A geneml expression reads 

f (V)  = f(vo)(vo/v) 

where the volume V is given by 

V(T) = VO[l + BS.I(T - To)l 

with the volume expansion coefficient ,3s,l, where s refers to the solid state and 1 to the 
liquid one, respectively, and TO is an arbitrary reference temperature. 

1.10” 

5’’ 

1.10’6 

Photon energy (eV) 

Figure 1. Semilogarithmic plot of the real parts of the total conductivity and interband part of the 
conductivity (in as units) at T = 300 K (1,2-), T = 900 K (3,4- . -) and T = 1500 K 
( 5 . 6 . .  . . . .). The upper curve represents the total real conductivity at each temperature. 
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3. The optical properties of aluminium 

For the temperature dependence of the DC electrical resistivity in the solid state, we can use 
in a good approximation 

PDC.sotid(T) PDC.solid(TO) f &.solid(T - TO) (11) 

where a linear regression fit to the values of Ashcroft and Mermin (1976) gives for poc, solid 

and ,9oc.=fia the values 2.7437 yQ cm and 0.0129 pP cm K-', respectively. A similar 
expression is valid for the liquid state, 

PDC, tiquid(T) = POC. liquid(Tm) = ~ O C .  tiquid(T - Tm) (12) 

where from the work by Gathers (1983) we can take for the constants the value 24.23 p 8  cm 
and 0.0145 p a  cm K-', respectively. The ratio of the liquid resistivity over the solid 
resistivity at the melting point represents a good check for the fitting relations used. 
Inserting the above values into equations (12) and (13) gives for the ratio 222, which 
exactly corresponds to the measured value (Iida and Guthrie 1988). 

f 
I 

Photon energy (eV) 

Figure 2. Real pm of the dielectric function at T = 300 K (-) and T = 1500 K (- . -), 
Data points shown are taken from the work of Smith et a1 (1985) (e) and Krishnan and Nordine 
(19931) (0). Note that h e x  axis is logarithmic. 
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Photon energy (eV) 

Figure 3. Imaginary pan of the dielecvic function at T = 3W K (-), T = 900 K (- . -) 
and T = 1500 K (- - -). Data pints are fmm Smith er nl (1985) (0). 

The volume dependence of the optical mass and of the band splittings was investigated 
by Tups and Syassen (1984). They found a nearly linear behaviour up to a very large 
change in volume (22%). which is much larger than the dilation between room temperature 
and the melting point caused by thermal expansion. This also justifies the linear regression 
fit, and we can write for the optical mass in the solid state 

(13) 

where the room-temperature value for the effective mass is taken from Mathewson and 
Myers (1972). M,(T = 300 K) = 1.45, and the thermal expansion is taken from e.g., 
Ashcrofi and Mermin (1976), ,!?$ = 7.5 x 

M A T )  = Ms(To)/[l + PdT - To)] 

K-I. 
The behaviour in the liquid state is described by a similar expression 

= Ml(T*)/[l + P I V  - 7-l" (14) 

with the volume expansion coefficient = 1.5 x 10"' K-' taken from Iida and Guthrie 
(1988). The value M,(T,,) = 1.28 is calculated using equation (13) and taking into account 
the volume change (6.9%) at the melting point. 

For the plasma frequency q ( T )  we can use the same expressions if we substitute the 
denominator by its square mot and insert 15.3 eV (Powell 1968) for the room-temperature 
value. 
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Photon energy (ev) 

Figure 4. MagniNde of ule real pm of the dielectric function at T = 300 K (-), T = 900 K 
(- . -) and T = 1500 K (- - -). Dah points are Gum Smith et d (1985) (0). Note that the 
y axis is logarithmic. 

Making use of equation (5). we are now able to calculate the Drude relaxation time in 
the solid and in the liquid state. Corrections to the scattering rate 1/z, which may be due 
to surface scattering (Holstein 1952) or quantum effects, as pointed out by Gurzhi (1957), 
are not included since their contributions are negligible at higher temperatures. 

It is easy to show that the magnitude of the real part of the interband conductivity in 
our model is proportional to the interband scattering time rm. But a direct calculation of 
rm is very complicated, even within the framework of more sophisticated theories, since 
it includes, among other effects, an o-dependent electron-electron scattering and band- 
sbucture broadening (Sturm and Ashcroft 1974, Smith and Segall 1986). For thkreason, 
we decompose r6' into a temperaturedependent part described by the Drude relaxation 
time rD(i")-', and a constant part zG1. which is used as a fitting parameter. In other 
words, far above the Fermi energy an interband electron can be scattered by an electron- 
phonon interaction and additionally by an effective electron-electron interaction. This 
point should be stressed since a large phase space is available for the electron-electron 
scattering only for energies high above the Fermi level (Ashcroft and Mermin 1976). As a 
consequence, we used ri' as a fitting parameter and got the best agreement with experiments 
for ri'(300 K)= 4/r~(300 K). The necessity of different relaxation times was also pointed 
out by Benbow and Lynch (1975). It was impossible for the authors to obtain a reasonable 
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Figure 5. Refractive index (-) and extinction coefficient (- . -)at T = 300 Kin a double- 
logarilhmic plot. Data p i n u  are from Smith ern1 (1985): (+) refractive index; (0) extinction 
coefficient. 

fit to their conductivity data with only a single relaxation time. 
The real part of the interband conductivity of aluminium shows two peaks around 0.3- 

0.4 eV and 1.6 eV (Smith et al 1985). and for the room-temperature values we will use 
w1 = 2U(111)/h = 0.34 eV and a = 2U(200)fr = 1.58 eV (Tups and Syassen 1984). 
The temperature dependence of these energies is derived in the same manner as discussed 
above for the optical mass. The conhibutions to the peaks are due to the transitions between 
the second s-like and the third plike bands along the directions U-A and K-F in k-space, 
respectively. 

Inspecting the experimental curves (for example, see figure 6 of Ashcroft and Sturm 
(1971)) suggests for B, the ratio of the amplitudes of R e m  (equation ( l o ) ) ,  the value 
B 'v 0.5. Using the above values for 01, a and zm, a numerical calculation yields 
B = 0.56. 

Finally, the oscillator strengths are given by 

A I  = (1 - I/M)[l/( l+ B)1 A2 = (1 - I / M ) [ B / ( l  + B)1. 

Now we have completed the list of quantities necessary for the computation of the optical 
functions. 
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Temperature (K) 

Figure 6. Extinction mefhcient at T = 1500 K at five wavelengths: (- . . -) 381 nm, 
(- . -) 422 nm, (......) 500 nm, (-- -) 622 nm and (-) 968 nm. T h e  data points m 
taken from Krishnan and Nordine (1993b): (W) 381 nm, (t) 422 nm, ( x )  500 nm, (U) 625 nm 
and (0) 968 nm. 

By way of illustration, we plot in figure 1 the behaviour of the complete real part of 
the conductivity Reu(o, T) and the interband contribution Reom(@, T) at T = 300,900. 
and 1500 K. As can be seen, the general effects of the temperature increase are to move the 
absorption peaks to lower energies and to broaden the peaks and reduce their heights due 
to the decreasing scattering time. The electron mean free path at T = !SO0 K, calculated 
from the electron scattering time and the Fermi velocity, is around 20 A for the inhaband 
electrons and 14 A for the interband electrons, respectively. This is in good agreement with 
the experimental results (Knight et a1 1959) and supports our simple approximation for the 
scattering time. 

The real and imaginary parts of the dielectric function, calculated from equation (I), are 
given in figures 2 and 3 and are compared with the available experimental results (Smith et 
a1 1985, table W, Krishnan and Nordine 1993b). Figure 4 shows the excellent agreement 
of the calculated Rec(w) with the experiment over a large range of photon energy. Note 
that the vertical scale is logarithmic. 

The refractive index, n(o)  = J[Rec(o)], and the extinction coefficient, k(o) = 
J[Imc(w)],  are presented for w = 0.01-50 eV in figure 5. The small deviations at high 
energies could result from additional transitions, obtained in a self-consistent band-structure 
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Figure 7. Real part of the dielectric function at T = 1500 K at five wavelengths. (- . . -) 
381 nm, (- . -) 422 nm, (. . . . . .) 500 nm (- - -) 622 nm and (-) 968 nm. The data 
points are taken f" Krishnan and Nordine (1993b): (M) 381 ~ n ,  (t) 422 nm, (x) 5W nm, 
(0) 625 nm and (0) 968 nm. 

calculation by Alouani and Khan (1986), and/or by a redistribution of core oscillator strength 
resulting from exchange effects (Smith and Segall 1986). In figures 6 and 7 the extinction 
coefficient k(T) and the real part of the dielectric function Rec(T) are plotted for five 
wavelengths together with the results from Krishnan and Nordine (1993b). Such a good 
agreement is not obtained for the refractive index, where the theory gives the correct 
qualitative temperature dependence but values higher by a factor of 1.5 to 2. Consequently, 
the same deviation appears for the real p a  of the conductivity because it is calculated by 
the authors h m  n(T) and k(T). 

Before we enter into a detailed discussion of the frequency and temperature dependences 
of the optical absorption, first of all we should investigate the effective number of electrons 
per atom (dat) contributing to the optical conductivity and the plasma frequency. 

Among the different possibilities to define the effective number density by the partial 
f sums up to an energy U, discussed by Smith and Shiles (1978), the most appropriate 
expression for our purpose reads 
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since it is directly related to the energy dissipation of an electromagnetic wave. N, represents 
the number of atoms per unit volume. Values of ne&, T) for the intraband and the complete 
oscillator strength are plotted in figure 8 for w = 0-10 eV at T = 300,900 and 1500 K. As 
can be seen, our theoretical room-temperature values fit very well the experimental results 
nH,imW = 1.87 zlc 0.09 and ne,tod = 2.78 zk 0.09, which are determined for the energy 
range 0-7 eV (Smith and Segall 1986). If we expand the energy integration up to 70 eV, 
just below the L edge at 72.65 eV, we get nfi,t,,d = 2.84, a value somewhat smaller than 
the expected valence conduction number of 3 dat. This is not surprising, since we have 
taken into account only the contribution of parallel bands. The so-called noma1 interband 
transitions, which according to Ashcroft and Sturm (1971) yield an additional amount of 
the order of 10%. are neglected. But it is worth while to note that a simple comparison of 
the theoretical number with the experimental value, netal,erp. - 3.1 dat, must fail because 
core electrons are already involved in this high energy range. 

Photon energy ( e 9  

Figure 8. Effective density of electrons (in electrons per atom) for the total and Lhe i n e d  
conductivity at T = 300 K (1, 2: -), T = 900 K (3,4 - - -) and T = 1500 K (5, 6: 
- . -). The experimental values at T = 300 K are taken from Smith et af (1985) (4). At 
each temperahwe, the upper curve Mongs to the total conductivity. 

The comparison of the curves shows that with increasing temperature there is only a 
slight growth of the intraband absorption, in contrast to the much stronger decrease of the 
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Figure 9. Volume and surface plasma frequency I T = 3 0  K ( I :  -), T = 900 K (2: 
- . -)and T = 1500 K (3; -e--). ?he intersecdon with - 1  determines the volume plasma 
frequency and wiul -2 the surface plasma f q w c y .  The plasma fquency of the nearly free 
elecbons is given by curve 4 (- . . -), The data are laken f” Powell (1968): (U) 300 K, 
(0) 900 K and (x)  1500 K. 

interband contribution. Evaluating the integral again up to 70 eV for T = 1500 K, we find 
an increase of the intraband contribution in comparison with the room-temperature value 
by a factor of 1.1 but a decrease of the interband term to n c ~ , i n r e h d  = 0.40. But more 
important than the reduction is the non-vanishing of this contribution. As a consequence, 
aluminium should possess a non-parabolic band structure also in the liquid state. Such 
a behaviour is well established for other metals, for example for lead from conductivity 
measurements by Inagaki et a! (1982) and from band-structure calculations by Jank and 
M e r  (1990). Oelhafen et a1 (1988) have found structuces in the density of states by means 
of ultraviolet photoelectron spectroscopy (ups) measurements below the Fermi energy in 
some low-melting liquid metals. 

The longitudinal plasma mode, which is measured, for example, in electron energy-loss 
experiments, has a frequency satisfying Re E ( @ )  = 0. The real part of the dielectric function 
is related to the imaginary part of the conductivity or to the polarizability, a(@), by 

Re&)= 1 +4nImo(o)/o= 1 +4na(o). (16) 
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Figure 10. Total and Dmde absorption at T = 300 K (1. 2: -), 900 K (3, 4 . .  . . . .) and 
1500 K ( 5 . 6 -  . -). The experimental values at T = 3W K am t r h n  from Smith e r d  (1985) 
(0) and from Briicloler er ol (1989) (a). The upper curves represent the total absorption. 

Hence, the plasma frequency is determined in figure 9 as the frequency where the 
polarizability has the value -1. This is the case for the total polarizability at o = 15.3 eV 
and for the Drude part at Q = 12.75 eV. Additionally, the surface plasmons, excitable 
in thin metallic films, and determined by the intersection of a(@) = -2, have the value 
oPr = 10.85 eV. All values agree very well with the experimental results (Klemperer and 
Shepherd 1963, Smith et a1 1985 table XI, Powell 1968). 

In the case of transmissionless samples, an 
assumption valid for not too thin films, the absorption is given by 

We shall now consider absorption. 

A(w, T )  = 1 - R(w, T )  = 1 - I[<(@, T) - 11”2/[t(~, T) + 11”21, (17) 

The electronic absorption (total and the Drude term) is plotted in figure 10 at T = 300.900 
and 1500 K. In contrast to the simple Drude behaviour, which is nearly constant from 
far-infrared (FIR) to ultraviolet (uv), the complete expression shows marked peak structure 
and a large enhancement around 1.5 eV in the solid state. For low energies, OJ c 0.1 eV, 
the graphs confirm the observation by Bennett et a1 (1963) that the free-electron Drude 
model gives a good account of the reflectance of aluminium. The change in absorption with 
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Figurell. TotalabsorptioninthesolidandliquidstlleyA = 10.6pm(l: - ) ,A = 1 . W p m  
(2: . . . . . .), A = 0.53 pm (3: - - -) and A = 0.355 pm ( 4  - r -1. The experimental values 
are taken from Briickner el al (1989) (0) and fmm Schriempf (1974) (m) and Amold (1984) 
(X). 

increasing temperature is similar to the real part of the conductivity (figure 1).  In the solid 
state, the main peak is essentially preserved and the increase at higher energies is mainly 
due to the Drude absorption. In the liquid state, the Drude absorption possesses a steep rise 
below 1 eV and is nearly exhausted at higher energies. A very broad contribution of the 
interband transitions appears above 1 eV. This is related to the non-vanishing optical mass 
and would, of course, vanish for M = 1 .O, indicating a m e  freeelectron-like behaviour. 

The comparison with experimental reflection results (Shiles et06 1980 figure 2) shows 
a very good agreement up to w N 2 eV. For higher energies, there is an almost constant 
difference of 3%. The reason is unclear, since neither an additional tmnsition, as already 
discussed above, nor an additional w-dependent scattering rate, as assumed by Dandrea and 
Ashcroft (1985), can lead to such a constant deviation. 

The temperature dependence is represented for four relevant laser wavelengths, bco, = 
10.6 pm, h ~ d  = 1.064 pm, A ~ d / 2  and bNd/3, from room temperature up to T = 1800 K 
in figure 11. Unfortunately, we are not able to test the predictions of the theory in the solid 
state for wavelengths lying in the range of interband transitions. Taking info account the 
experimental uncertainty, the theoretical curve fits the CO2 data (Amold 1984, Briickner 
et QZ 1989, Schriempf 1974) very well. For the liquid state, Krishnan et al (1991) have 
measured absorption data with a nearly parallel growth the b N d / 2  curve but much lower 
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values. We have rejected their curve because the absorption values above the melting point 
are below the corresponding room-temperature result. 

4. Conelusions 

Though the proposed theory is simple enough to allow a calculation on simple personal 
computers, its results are in fairly good agreement with the experiments. This is, of course, 
to a large extent related to the simple electronic properties of the nearly-free-electron metal 
aluminium. But the separation of the conductivity into a Drude-like (intraband) and an 
interband part, which is dominated by the contributions of a few parallel one-electron 
bands, should be possible also for other polyvalent metals. From a purely theoretical point 
of view, the disadvantage of a semiphenomenological theory is the number of necessary 
experimental input parameters, However, we believe that this is balanced by its flexibility 
and the possibility of a fast computation of the frequency &d temperature dependences of 
the optical properties. 

It is worth while to note that not only is the theory capable of describing some selected 
optical properties but also it gives good agreement with all available experimental data. 

The application of the theory to other polyvalent metals, indium and lead, for instance, 
is in preparation. 
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